close
標題:
prove by factor theorem that 9^n-1 is divisible by 8
發問:
prove by factor theorem that (9^n)-1 is divisible by 8 for all positive integers n. 更新: 沒錯這是個可行的方法 可是你的答案不合要求
最佳解答:
Let f(x)=9^n-1 By applying the formula a^n-b^n=(a-b)[a^(n-1)+a^(n-2)b+......ab^(n-2)+b^(n-1)] f(x)=9^n-1=8[9^(n-1)+9^(n-2)+......9+1], which is divisible by 8 no matter what value of n is. [我唔知咁樣算唔算用左factor theorem,希望幫到你啦~~]
prove by factor theorem that 9^n-1 is divisible by 8
發問:
prove by factor theorem that (9^n)-1 is divisible by 8 for all positive integers n. 更新: 沒錯這是個可行的方法 可是你的答案不合要求
最佳解答:
Let f(x)=9^n-1 By applying the formula a^n-b^n=(a-b)[a^(n-1)+a^(n-2)b+......ab^(n-2)+b^(n-1)] f(x)=9^n-1=8[9^(n-1)+9^(n-2)+......9+1], which is divisible by 8 no matter what value of n is. [我唔知咁樣算唔算用左factor theorem,希望幫到你啦~~]
- 我今年9月讀中三,將來洗唔洗會考-@1@
- 唐8樓裝修
- (7^-5+8^-5)^-5@1@
- $5000砌機..........thx
- Nostale搵人帶升
- 8月3日皇馬對廣州恆大@1@
- 有無最高監禁99年-
- 2008 8月期間有冇台灣明星在香港開演唱會-@1@
此文章來自奇摩知識+如有不便請留言告知
其他解答:554581090DCCD3AC文章標籤
全站熱搜
留言列表